39 research outputs found

    Computing the Rank Profile Matrix

    Get PDF
    The row (resp. column) rank profile of a matrix describes the staircase shape of its row (resp. column) echelon form. In an ISSAC'13 paper, we proposed a recursive Gaussian elimination that can compute simultaneously the row and column rank profiles of a matrix as well as those of all of its leading sub-matrices, in the same time as state of the art Gaussian elimination algorithms. Here we first study the conditions making a Gaus-sian elimination algorithm reveal this information. Therefore, we propose the definition of a new matrix invariant, the rank profile matrix, summarizing all information on the row and column rank profiles of all the leading sub-matrices. We also explore the conditions for a Gaussian elimination algorithm to compute all or part of this invariant, through the corresponding PLUQ decomposition. As a consequence, we show that the classical iterative CUP decomposition algorithm can actually be adapted to compute the rank profile matrix. Used, in a Crout variant, as a base-case to our ISSAC'13 implementation, it delivers a significant improvement in efficiency. Second, the row (resp. column) echelon form of a matrix are usually computed via different dedicated triangular decompositions. We show here that, from some PLUQ decompositions, it is possible to recover the row and column echelon forms of a matrix and of any of its leading sub-matrices thanks to an elementary post-processing algorithm

    Apparatus for a Search for T-violating Muon Polarization in Stopped-Kaon Decays

    Full text link
    The detector built at KEK to search for T-violating transverse muon polarization in K+ --> pi0 mu+ nu (Kmu3) decay of stopped kaons is described. Sensitivity to the transverse polarization component is obtained from reconstruction of the decay plane by tracking the mu+ through a toroidal spectrometer and detecting the pi0 in a segmented CsI(Tl) photon calorimeter. The muon polarization was obtained from the decay positron asymmetry of muons stopped in a polarimeter. The detector included features which minimized systematic errors while maintaining high acceptance.Comment: 56 pages, 30 figures, submitted to NI

    Solid 4He and the Supersolid Phase: from Theoretical Speculation to the Discovery of a New State of Matter? A Review of the Past and Present Status of Research

    Full text link
    The possibility of a supersolid state of matter, i.e., a crystalline solid exhibiting superfluid properties, first appeared in theoretical studies about forty years ago. After a long period of little interest due to the lack of experimental evidence, it has attracted strong experimental and theoretical attention in the last few years since Kim and Chan (Penn State, USA) reported evidence for nonclassical rotational inertia effects, a typical signature of superfluidity, in samples of solid 4He. Since this "first observation", other experimental groups have observed such effects in the response to the rotation of samples of crystalline helium, and it has become clear that the response of the solid is extremely sensitive to growth conditions, annealing processes, and 3He impurities. A peak in the specific heat in the same range of temperatures has been reported as well as anomalies in the elastic behaviour of solid 4He with a strong resemblance to the phenomena revealed by torsional oscillator experiments. Very recently, the observation of unusual mass transport in hcp solid 4He has also been reported, suggesting superflow. From the theoretical point of view, powerful simulation methods have been used to study solid 4He, but the interpretation of the data is still rather difficult; dealing with the question of supersolidity means that one has to face not only the problem of the coexistence of quantum coherence phenomena and crystalline order, exploring the realm of spontaneous symmetry breaking and quantum field theory, but also the problem of the role of disorder, i.e., how defects, such as vacancies, impurities, dislocations, and grain boundaries, participate in the phase transition mechanism.Comment: Published on J. Phys. Soc. Jpn., Vol.77, No.11, p.11101
    corecore